x^2-9=-(x-3)(x-5)

Simple and best practice solution for x^2-9=-(x-3)(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-9=-(x-3)(x-5) equation:



x^2-9=-(x-3)(x-5)
We move all terms to the left:
x^2-9-(-(x-3)(x-5))=0
We multiply parentheses ..
x^2-(-(+x^2-5x-3x+15))-9=0
We calculate terms in parentheses: -(-(+x^2-5x-3x+15)), so:
-(+x^2-5x-3x+15)
We get rid of parentheses
-x^2+5x+3x-15
We add all the numbers together, and all the variables
-1x^2+8x-15
Back to the equation:
-(-1x^2+8x-15)
We get rid of parentheses
x^2+1x^2-8x+15-9=0
We add all the numbers together, and all the variables
2x^2-8x+6=0
a = 2; b = -8; c = +6;
Δ = b2-4ac
Δ = -82-4·2·6
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4}{2*2}=\frac{4}{4} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4}{2*2}=\frac{12}{4} =3 $

See similar equations:

| 32^x+3=64 | | 15x+123=5x+4 | | 12=1/2(-9.81)t^2 | | 8(12-y)=3(y+21) | | -2(y+4)=-4y-22 | | 18=15m | | 12+9n=21 | | 6x+1/8=9-x/7 | | -2(w+1)=16 | | -9=11-+b/8 | | 3y=3.22-y | | F=0.3333333333+1.333333333x | | 12x-7=8x+33 | | 4•7+9=10c-2c+6 | | 72=7y+2 | | 5s+40=40 | | 2x-4/3=3x+6 | | 5x+80=10 | | 7x+6=-6x-7 | | 2(x-8)+9=1x-4 | | 8x​​-​​27​​-​​10​​-​​6x​​=15 | | 8m-5=3m+15 | | 2+16x=-21-7x | | 40+54.45x=59.45x | | 8(x-4)+4=8x-28 | | 5(k-2)=7k+4 | | (20+x)(500-20x)=R | | 40+54.45x=59.45 | | 2/x=17/34 | | h/3-11=6 | | -5(2x-27)=2(x-1)-7 | | -6y-45=5+4y |

Equations solver categories